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Abstract-Hollow elastic cylinders containing moderately eccentric holes subjected to internal
pressures are analyzed by means ofa perturbation method. Using the eccentricity as the perturbation
parameter. results are obtained by means of a sequence of directly derivable solutions for an
equivalent perturbed concentric domain subjected to appropriate boundary tractions. The latter
may be considered as corrective tractions which are required to satisfy the boundary conditions of
the actual domain. Expressions for the stress field are established. Numerical results for the effect
of eccentricity are presented for the stresses at the critical section and stress amplification factors
are obtained. From a comparison of the results for the maximum stress componenb with an exact
solution previously derived. it is seen that the method of Equivalent Perturbed Domains leads to
accurate solutions for small to moderate l.'Cccntricities.

I. INTRODUCTION

Among the component parts or nuclear reactors. there exist thick-wall pipes cont'lining
fluids under pressure and high temperatures. It is known that the pipes. which initially have
thick walls. are subject to considerable erosion. Due to an uneven erosion. these walls
become much thinner over the years and the internal boundary. initially concentric. can
become eccentric. High stresses. induced in thc wcukened walls. thus endungcr the entire
structure. In order to obtain the stress fields in the changed conliguration. one must analyze
the cylinder as an eccentric Lame problem.

A complete solution to this problem. given by Jeffery (1921) and rercrenccd in Timoshenko
and Goodier (1970). was obtained using bipolar coordinates. However. using such a co
ordinate system. the solution yields stress components whose orientutions arc in directions
which themselves arc dependent on the given eccentricity_ While this may not pose u severe
problem. the results thus obtained lead to some ditftculty in the physical interpretation or
the stress tidds.

rr the eccentricity of the internal hole is not large. it is then possible to analyze the
problem by means of perturbation techniques which lead to relatively simple solutions.
Such an analysis is considered below. based on a higher-order Boundary Perturbation
Method developed by Parnes and Beltzer (1986). This method. when developed to second
order. has been shown by Parnes (19H7) to yield results of great accuracy even for relatively
moderate el:l:entricities. In the following investigation we extend the mcthod to a Method
of Equivalent Perturbed Domains and apply it using .1 third-order scheme. Thc stress
fields with n:spect to the original pobr coordinate system arc then calculated for various
eccentricities and r'ltios of inner to outer radius and an: presented in graphical form.
The maximum stresses obtuined from the method of Equivaknt Plo:rturbed Domains arc
compared with the results given by Jeffery .and .lre seen to be highly accurate for moderatc
eccentricities.

It thus appears that the method or Equivalent Perturbed Domains as developed in this
paper can lead to solutions for other problems which may prove intractable when using
bipolar coordinates.

2. GENERAL FORM ULATIO;\j

We consider an elastic thick wall cylinder in a domain nn bounded by a circle Co of
radius a with center O. the origin of an (;. (J) polar coordinate system. The cylinder contains
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Fig. I. Geometry of the problem.

a circular hole C, of radius b. whose center 0 has an eccentricity with respect to 0 given by
I. For b < a and 1< a. we define the non-dimensional parameters

with

y =bla. ,,= I/a (Ia. b)

( Ic)

An internal pressure p is assumed to act along the surface C, (Fig. I).
Denoting the stress components in this coordinate system by 6,/(;. U). the problem is

governed by a bi-harmonic equation on the Airy Stress function <1>(;. U).

(2)

subject to a traction-free surface Co and a pressure p on C,. We consider here the case of a
circular hole with small to moderate eccentricities which permits a treatment of the problem
by means of a perturbation scheme.

A second coordinate system (r. 0) is first established with center at O. If the eccentricity
parameter" is sulTIciently small. we may then, following the development of Parnes and
Beltzer (1986), consider the boundary surface Co to be a perturbation of a circle c" of
radius a, and with center O. The boundary Cu thus defines a domain Q u with points Po on
C, being mappings of points Pu on Cu (Fig. 2). It is noted that Co is then a curve with
varying radial distance '0 from 0; i.e., '0 = '0(0). Symbolically, the perturbed relation
Cu -+ Co is written as

a -+ '0 = 'o(a, 0,11> (3)

with 'ol~-o = a.
We now extend the function analytically and assume that the governing equation is

valid in the domain 0 0 u Q u • Defining the non-dimensional coordinates

Fig. 2. Perturbation of the geometry.
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Fig. 3. Coordinate systems.

p = fill. P = rill.

the problem is then governed by the equation

subject to the traction-free boundary condition on C,

f (rn.m =O.

and to the following conditions on C, :

1607

(4a.b)

(5)

(6)

(7a.o)

Denoting unit vectors in the (f.lT) and (r. 0) systems by (cr. C,l) and (cr' C,I) rcspectively
(Fig. 3).

C" = cos {Icr - sin lIe"

C,1 = sin Ilcr +cos /Ic"

where

{I =0-11.

Noting the stress tensor in the (r. 0) system.

(8a)

(8b)

(9)

( \0)

the traction f on the surface Co is given by

f = T·C;.

Substituting eqn (8).

f (rn. 0) = Tr Cr + 1'" C,I

where the components T, and T" are given by

(1\ )

(\2)
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Tr = UrrCOS/J-urosin/Jlco

T9 = Urocos/J-uoosin/Jlco'

(l3a)

( I3b)

The problem is therefore specified by eqn (5) and the conditions eqns (6) and (7) where

+1 Co is defined by the components of eqns (13).
Following the perturbation scheme, the stress function <I>(r, 0) is expanded in powers

of the eccentricity '1; i.e., we let

.v
<I>(r,8) = <I>(Ol+,,<I>(I)+,,2<1>(2l+,,3<1>1:>1+ ... = L'lk<l>(kl(r,O)

k-O
(14)

where N is the order of the scheme. The corresponding stresses uij(r, 0) are assumed to be
expandable as

,v
u(r 0) - UfO) + '1u(l) + ... = ' nku(kl(r 0)'i' - li', ~~, 'J '

k-O

where (Fung, 1965)

Using the linearity property of the system, eqns (5)-(7) are satisfied by setting

subject to the following conditions:

For k =0

U~~I(y,O) = -p, u~gl(i',O) = 0

Tr (ro, 0) = Te(ro,O) = o.

For k;;?; I:

(15)

(l6a)

(16b)

(16c)

(17)

(l8a, b)

(18c,d)

(19a, b)

(19c,d)

We observe that the boundary conditions of eqns (18c. d) and (19c. d) are specified on
the contour Co, described by the parametric relation of the form given by eqn (3). Solutions
of the system of equations (17)-(19) require that the conditions of eqns (18c, d), (19c. d)
be expressed along the coordinate surface Ca ; i.e. we require boundary conditions for the
equivalent domain Qo' These are obtained in the following section where, upon establishing
the appropriate geometric relations and expansions. the explicit equivalent boundary condi
tions are derived.
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3. GEOMETRIC RELATIONS AND EXPLICIT PERTURBATION EXPRESSiONS

As discussed above. we obtain solutions to the problem posed in the domain 0 0 as a
perturbed solution in the domain 0Il' More specifically, we consider functions, and in
particular the boundary conditions at a point Po(r = roo 8) on Co as perturbed values of
the functions at P..(r = a. 8) on Ca (Fig. 2). Noting that Po and Pa possess the same
coordinate 8, analytic functions f(r. 8) may be expanded about the point Pa by means of
a Taylor series.

II e,l == I(ro. 8) = I(a. 0) +f,(a. 8)' (ro -a) + !.f.,,(a, 0)' (ro - a)2

+ l!rrr(a. 8) . (ro - a) 3 + .. '. (20)t

f I

We note that here [(roo 8) may represent either of the traction components T, or T/},
given by eqns (13). which are seen to be also dependent on p=8 - g. Before proceeding.
we require explicit geometric expressions and expansions relating the two coordinate
systems. In what follows below. all expressions will be expanded, unless otherwise noted,
up to third order, N = 3.

3.1. Geometric relations
From Fig. 3, and the definition of eqns (4). the exact relations

sinll=~sinO
p

arc noted, from which it follows that

I
cos II =~ (p + 11 cos 0).

p

For ,,/1' « I, expansions in powers of ,,/p up to order N = 3 yield

(2Ia)

(21 b)

(2Ic)

(22a)

as well as its reciprocal

~ = ~ [1 -cos O,,/p + ~ (2 cos! 0 - sin! 0),,2 jp! + ~cos 0(3 sin20_ 2 cos 2 0)11 3jp3]+0(11").

(22b)

Hence

cosp = l-lsin%0,,2jp2+cosOsin!O,,3/p3+0(,,") (23a)

sin p= sin 0[,,/p - cos 0,,2 j p2 + ~(3 cos 2 8- 1)11)/p3] +0(,,"). (23b)

In addition, we note, upon setting p = I(f = a), that eqn (2Ia) leads to the exact
relation

(24)

t Here. and in all subsequent expressions, derivatives with respect to a variable are denoted by a subscript
preceded by a comma; e.g.• f. s af/or. etc.
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whose expansion for" « I becomes
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, () sin ~ () , ~
rl)(() a = I-cos '7--::,;'-'7-+0('1 )

from which

I I [ l " 'J- = - I +cos ()" + ~(I+cos-()'1-+cos()'1 +O(,,~).
rl) a -

(25a)

(25b)

Equations (25) are thus the parametric representation of the curve Co represented
symbolically by eqn (3). It is observed here that the expressions (22) and (23) are expressed
in terms of the (r, 0) system.

3.2. Perturhariofl expressiol/s
The equiv,t1ent traction components,on the boundary C. are obtained by substituting

eqns (23) in the expressions for T, and Til given by eqn (13), expanding according to eqn
(20) and making usc of eqn (25). Performing these operations and collecting in powers of

'I yields. for the components f" (j = r. 0) :

, I
7~(r1}' lJ) = rr" - (a cos Oa"" +sin Oall, )'1 + ., [a~ cos ~ Oa".rr - sin 2 O(lla'I., +a,,)

Finally, substituting the perturbation expansion, eqn (15), for the stress components
(J'., and again collecting in powers of '1 leads, for j = r, 0, to the following expression:

T(r 0) = (J't.llli . + [(J'!ll + LillI] .,,+[a'21+ L lll + L lll)] ,,/ 2
I o~ rj (., rJ ! Ie" r/ J I J ~ ( ,/

where the functions ,L:,~I (m = I, 2, 3; k =0, I, 2), evaluated along Cu , i.e. for {J = I, arc

jLlJkl = 1~ [-a '(3 cos () +cos 30)(J',i.m +3a(cos 0 - cos 30)(a(J',/." +a'I.,)

- 3a~(sin ()+sin 30)al/l ." +3a(3 sin () - sin 3(})(J'I//.,rkl
• (28c)

The bracketed terms [.. .r" appearing above denote that the combinations of stress com
ponents and their derivatives contained within, refer to (J'l7'.

Noting in each case, k = 0, 1,2,3. that the required boundary conditions are, according
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to eqns (18c,d) and (19c,d), ~(ro,O) = 0, these conditions are satisfied by setting the
coefficients of"" appearing for all arbitrary ", in eqn (27), to zero.

Thus. to summarize the scheme explicitly. the perturbation solution is obtained accord
ing to eqns (17)-(19). from solutions to the following sequence of problems:

k = 0:

(29)

(30a, b)

(30c.d)

k ~ I:

where for

k = I:

k -.,.- _.

k = 3:

11~~)(Y. 0) = 11~~)(Y. 0) = 0

/1(3)(1 0) = -[ r I2)+ r ll )+ rIO)]rll. II I II 2 II)'

(31 )

(32a. b)

(33a. b)

(34a. b)

(35a, b)

Each of the above cases represents an auxiliary problem whose solution yields stresses
within the domain n•. and by analytic extension within the domain no un., The total stress
solution is then given by eqn (15).

4. PERTUR8ED SOLUTIONS

From the previous section, we observe that the case k = 0 represents a cylinder with
a traction-free outer surface C. of radius a containing a concentric hole C, of radius h
subjected to an internal pressure p (Fig. 4a). On the other hand, cases k > 0 describe the

O"k oO"k- cosk8 • Tk OTk linkS

koO k>O

Fig. 4. Loadings of the equivalent domains. k ., O.
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same cylindrical tube with a traction-free interior surface C,. but subjected to tractions
acting on the outer surface C given by eqns (331-(35), The loadings for k > 0 may thus
be considered as corrective tractions acting on the equivalent domain n" which are required
to correct the solution for the original cylinder lying in the domain no and containing the
eccentric hole, These corrective external tractions. for the cases k > 0 are seen. according
to eqos (28), to be combinations of the form a" = a:cos flO. a,,, = r:sin nO (n :::::: O. I. 2.... )
(Fig. ~b). The general solution to these auxiliary probh:ms is derived in the Appendix.

We proceed now to the required specific solution for each of the cases k :::::: O. l, 2. 3.

4.1. Tlte k :::::: 0 cast'
As noted above. this case. governed by eqns (29) and (30). is recognized as the classical

Lame probkm of a hollovv tube subjected to an internal pressure. whose solution is (Lame.
1852)

....f ll} =
v" (36a)

where

with ;. ddined by eqn (Ia).

~ ()~ + I)

I
D= ,-I...,

(36b)

(36l:)

(37)

4.2. 71/(' k = I cas£,
This case is governed llccording to eqn (31) by the bi-harmonic equation V 4,!>( II = ()

with vanishing traction ·hr. 0) = 0 on r = h. Substituting the stn:sses a:;I)( 1.0) on C" given
by eqns (36) in the remaining boundary conditions. cqn (33), the explicit loading for this
case becomes

(II _ 21' .
a" lc., - f) cos 0

(I) 21'. 0
arll Ie. = D SIO .

(38a)

(38b)

The generul solution to this external loading case is given in Section A2 of the Appendix.
Hence, setting aT = 2pjD, the stresses aU} are. from eqn (AI6),

a( Il({1 0) = __ !r:... .(1'4 _(4) cos ()
rr. D(I_/)p3

lIl( 0) 21' (3 ~+.~). 0
(1,/11 p, = -D-(-I.-'----~-)···-j P 'I cos

-~. P'

• II l') '2p (~ 4)' ('a 1 ({I , =------------- P -" Sin,
rl. D(I_/)p1 , .

(39a)

(39b)

(39c)

4.3. The k = '2 case
This case is govcrned by thc bi~h.lrmonicequation on $l~} where again the traction on

the surface C; is zero. The applied traction on CII • obtained from the equivalent boundary
conditions. eqns (3~). yields. upon substitution of eqns (36) and (391. the explicit loading
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O'~;) IC
d
= D(I~"/) [4+ (3/ + 1) cos 28]

(7~~)ICd = D(l~"/) (5+3l) sin 28.

1613

(40a)

(40b)

General solutions for these cases are given in the Appendix, Sections A land A3.
Hence. letting

and

4p
O"~ = ----,-

D(I-'/)
(4101)

(41 b. c)

in eqns (A4) and (A 19) respectively. the stresses. after simple algebraic manipulations. are
readily evaluated:

('I P {6" 3" I 4 ... "" 3 4( .. } . 2()l1,i/ =D"("',-'--4)-(-I"-":!-)'--,j fJ -( T+ )1' -LTP"+ 'I 1-'1") Sin .
-j' -y p

(42a)

(42b)

(42c)

4.4. 71/(' k = 3 ('(IS('

Prm:ccding as in the previous cases k = I and 2. we notc that this case corresponds to
a cylinder. traction-free along the boundary Cj and subjected to an extcrnalloading on Ca

given by clJns (35). Substituting eqns (36). (39) and (42) these becomc:

"p
(7~?'lc. = D'i~~1 +y2) {3(1+y2)cosO+(2y6_2y4+3y2_I)cos30} (43a)

O'~i~)lc = D
3

}P 4 {2sinO+(y4-2y2+3)sin30}. (43b)• y

Hence, setting

3(y" - 27 2 +3)p
r* - ----;--;---"-

J - D Jy4

(44a)

(44b.c)

in the Appendix.. and using eqns (A (6) and (A 18). the stresses are given by

l1~~" = r,(p4_i'4)COsO-2(3AJP+2BJpJ+6C3/ps+SD3/p3)cos30 (45a)
p

(1~I~1 = r1 (3p-l+/)cos8+2(3AJP+ lOBJP3+6CJ/ps+DJlp3)cos38 (45b)
p'
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where the constants. according to eqns (A::!O) and (A21). are as follows:

In the above.

B) = - ;" (/+4,,2+ 1)

P",t>
c; = - 36" (./ +27'1_7y2 -2)

p"/
D) = - D' C'i'''+4y2+ I).

"

5. TOTAL SOLUTION AND TRANSFORMATIONS

(46a)

(46b)

(46c)

(46d)

(47a. b)

We denole, for convenience, the stresses (1,,(r, 0) and the perturbation stresses
t1~:I(r, 0) respectively, by means of the vectors

The stress solution for the third order scheme is then, from eqn (15), written as

)

{a} = {(1{O)}+q{(1{II}+'12{q(21}+q3{a(Jl} = L qk{a1kl }
k4 I

(48a, b)

(49)

where {(1lkl}, k = 0, I, 2, 3, are given respectively by eqns (36), (39), (42) and (45). It is
observed that the above quantities are expressed as functions of (r, 0).

Stress components «(1;;, (11111, a;o) may be obtained by means orthe stress transformation
laws. Denoting these components by means of the vector

{

(1,,}
{a} = (1:: •

(1;/1

the transformation law may be written as follows:

{a} = [AH(1}

where [1\]. the transformation matrix, is

(50)

(51)
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[A] = [ :~::;
sin f3 cos f3

sin2 f3
cos2 f3

- sin f3 cos f3

- 2 sin f3 cos {J ]
2sin fJ cos p

'{J . 'pcos- -sm-

(52)

and where the trigonometric coefficients are readily obtained from eqns (21). Expressed in
this way. the stress components of {a} with respect to the (i. (/) system are given at field
points defined by the (r. 8) coordinates. In order to express {a} in the (i. (/) system. it is
necessary to use the inverse relations of eqns (21).

Noting that (Fig. 3)

and using eqn (21)

sin (0-0) = ~sinO
p

and the trigonometric relation

-I [ sin ff ]
8 == tan cosO:"'-rflii '

one obtains

. ii si n (J /' cos (j - '1
Sin 0 = , cosO == .-- .. ,.

p(p. (j)' 1'(/;. (I)

where I' = {'(P. (j) is given by eqn (53a). One can then readily obt'lin the relations

. sin(J P-rfcos(j
sm p= 'I --" cos {J == ---- -0.

p( p. (j)' p(P. (j) .

(53a)

(53b)

(53c)

(54a. b)

(55a.b)

The coefficients appearing in the transformation matrix. [A] ofeqn (52) are then readily
expressed in the (i. (j) system.

6. NUMERICAL RESULTS AND CONCLUSIONS

Stress components were calculated using the expressions of Section 4 and eqns (49)·
(55). In order to verify the accuracy. numerical tests. consisting of the verification of the
overall equilibrium of the upper portion of the tube (0 ~ (J ~ 1t) were performed. The tests
showed the estimated accuracy of the resulting stresses to be of the order of 10% for
perturbation values" < 0.3.

Results for the stress components (11111 are presented for points along the critical section.
namely the x-axis (Fig. I), for various values of i' and 'I.

The variation of the stresses (11111 with x for typical values of 7. 7 == 0.3 and 7 == 0.5. is
shown in Fig. 5 for several eccentricities: " =O. 0.1. 0.15. 0.2. 0.25.

As in the classical Lame problem of the concentric tube. for a given hole of radius
h == ra. one observes that the maximum stress occurs on the internal boundary, Cj. For the
eccentric problem at hand this maximum occurs at the point on Cit Xlff == b+l = (r+,,)a.
which is located closest to the external boundary, that is, at the point adjacent to the
smallest wall thickness.

Using eqns (36)-(47) and (15), the maximum stress at this point (p = 7. f) == 0) is
given by
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CTil
P
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(a) Y'0.3

'7]'0

0.10

0.15
0.20
0.25

(b) Y·O.S

2.S,.-----r-.....-~-r__,..-...,.-...-_y
CT88

P
2.0

oI£..-->-_-'-u.;..l...---L._--L..-_L.....!..LU..--J
-1.0 -0.5 1.0

lila

Fig. 5. Varialioll of Ihe 11,1,1 slresses along the x-axis.

Upon expanding to third order the exact expression for the maximum stress at this
point, as given by Jeffery (1921),

(57)t

we recover eqn (56) identically.:
A numerical comparison of the equivalent perturbed domain results given byeqn (56),

11.1'<1' with the exact results of eqn (57), shown in Table I, yields a measure of the accuracy
of the Equivalent Perturbed Domain method as developed here. We observe that the
percentage error increases for larger values of 7 and, as expected, increases with greater
eccentricities. Nevertheless, we may note that for moderate eccentricities, e.g. 11 < 0.3, the
error remains within 13%. (This is consistent with the estimated order of accuracy from
the overall equilibrium test as mentioned above.)

The maximum values of 11,M at the point :em are shown in Fig. 6 as a function of I for
several eccentricities. One may note that the effect of the eccentricity 'Ion the maximum

tThe original equation as given by Jcffcry (1921) is wrillcn hcre using the notation of the present paper.
: In a sense this provides a eheck on Ihe expressions given in Section 4.
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Table I

" (Je~ IT"", ~/o error

i' = 0.\ 0.10 1.0Z1 I.OZ9 0.71
O.ZO 1.0Z4 \.038 1.41
0.30 \.OZ7 1.049 2.08

i' = 0.2 0.10 1.09Z 1.119 Z.45
0.20 1.106 1.159 4.79
0.30 1.IZ8 1.205 6.83

i' = 0.3 0.10 UZ8 1.2~4 4.56
0.20 U75 1.386 8.65
0.30 1.351 1.506 11.5

i' = 0.4 0.10 \.460 \.555 6.50
0.20 1.586 1.77\ 11.7
0.30 I.~06 Z.043 13.1

4.0,....------.---....---,---..,----n

30

2.0

10'1------

o 0.2

y. b/a

0.4 0.6

Fig. 6. Maximum IT"" stresses at Xm as a function of i'.

value increases rapidly with increased values of y. This same effect is noted in Fig. 7 where
the variation of (a,m)m... is presented as a function 01''1 for a family of curves {.

Curves showing the stress amp/ijicaliotl }(I(·lOr. a,1I1(x,.)/a,1,1(x",)1 ~ ~ () as a function of the
eccentricity '1 and hole size {are presented in Fig. 8u. b, It is reudily noted that the maximum
stress increases by 20% in comparison to the concentric cuse for u hole with value y == 0.6
which is eccentric by / == O,la. However. for this same hole. the muximum stresses increuses
by 200% when the eccentricity reaches / == 0.3a. One may conclude. using a simple physical
reasoning. that for increasing values of x",/a == i' + tl. the stresses increase continuously and
that us x",/a -- I. at;,; -- x.

It is evident that the perturbation method used in this investigation cannot be expected
to lead to accurate results for large eccentricities. Nevertheless. within the limited range of
moderate eccentricities, the solutions obtained by the Method of Equivalent Domains yield
reasonably accurate quantitative results for the effect of eccentricities on the stresses for
various cylindrical geometries. It may be expected that the application of the method to
other problems will yield solutions of similar accuracy.
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Direction des Etudes et R.:cherches. Electricite de France (EDF). Clamart. France.
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4.0,.------...----.....---,.---,.--.,..........,

y. bid

Y·O.6

0.2
l.ol=:===:=::==============~~O:;.l:.;;J

o 0.1 02 03

Fig. 7. Ma:titllunl cr,,,, stresses al X", as a fUllction of fl.

2.0 (01

"'~i:-f -
~1

SO
15

loL Iiili§:;::::C=..L_............_-.J
0.2 0.4 06

Fig. 8. Stress amplification f.:lctors.

REFERENCES

Fung. Y. C. ((965). FJllmclati""-r l{Sl,th! Jh·c!utf!;('.v. Prentice-Hall. Englewood Cliffs. NJ.
Jeffery, G. B. (1921). Plane stress and plm!c strain in bipolar co-Qrdinates. Phi/' Trun.v. R. So('. Llmd. Ser. A 221,

265··293.
LIme. G. (1852). lA!fllllS slIr 1/1 -n'l~r,rit· til:' l'thwidltl , G:lulhicr-Villars. Paris,
Parncs. R. ([ 987). The houndary perturb.llion method in elasto5tatics: investigation of higher order effects and

m:curacy of .solutions. J. Ml'C. TIII'or. Appl. 6(2}. 293-314.
Parnes. R. and Rclt7.cr. A. 1. (198M. A higher-order boundar)' perturbation method for asymmetric dynamic

problems in solids-Part I: gem.:ral formulation. 1m. J. SQlidv SlruCI. U( II I. 1/77-1187.
Timoshcnko. S. P. and Goodier. J. N. (1970). Th{'{}ry of Eltlslidtf. McGraw-Hill. New York.



The eccentric Lame problem 161lJ

APPENDIX: AUXILIARY PROBLEM SOLUT10NS-HOLLOW CYLINDER SUBJECTED TO
II-DEPENDENT EXTERNAL TRACT10NS

We n"rain rhe ~oll1rinn~ In the reQuired au~iliarv rro"lems' concentric hollow c,'linders (with inner anri nnler
radII" and </ rcspl:I:tI\\.:ly : b = ;'</: ;' < I). subJ~'l.:t.:d to .:xtt:rnal cosmusoldal and smusOIdalloadmgs on th.: outt:r
~lIrface C. (Fill, 41'l l.

The stresses can be obtamed from the Airy stress function 1Il''''tr. tI) satisfying th.: b,-harmonlc equation

V'IIl'·'(r.II). n > 0

and subject to the conditions

u"lc, = u:cosnO. u,olc, = r:sinnll. n ~ 0

where u:and r:are known quantities. The resulting stress components are then given by eqns (16).

(AI)

(A:!a.b)

(A3a. b)

AI. Cast? n = 0
This case represents the classical Lame problem of a hollow concentric cylinder subjected to an axisymmetric

eltternalloading u"lc, = u~. whose solution is (Lame. 1852)

(Ma)

(MI'l)

(A4c)

where n is defined by eqn (37). and where I' = r/a,
The c"ses n = I "nd n > I require a sel'ar.lle tre"tmenl.

A2. Ca.f(' n = I
It is first ohserved th"t ovenlll equilihrillm cOllsider"tions of the cylinder lead to the requirement nr = tr in

eqns (AJ), Consistent with the hound"ry conditions of ellns (A2) and (A3). <~, "(r. 1/) admits a solution of the
form

A ,
<""'(r.lIl = 2 ,II SIl1I/ + (a,r + A ,/r + B,,' +b,rlogr) cos II.

Substituting in eqns (16)

A
U~:' = -cosU+(-2A,/r'+2B,r+b,/r)cosU

r

u:~,' .. (2A,/r'+6B,r+b,/r)cosll

u~~J = (-2A,lr'+2B l r+b ,/r)sinO.

Equ"tions (A2a. b) then le"d respectively to

.,
A,- i:A,+2b'B,+b, =0

.,
-i:A,+2b'B,+b, =0,

(A5)

(Ma)

(A6b)

(Me)

(A7a)

(A7b)

Hence A, = O. Noting too th'ltthe a, term does not contrihute to the stresses. we set a, =O.
Substitution of the bound"ry conditions. eqns (AJa. b). with the above-menlioned requirement (nr = trl.

yields the identical equation

, b,
-2A,la +2B,a+--=ur.

a
(A8)

It is noted that eqns (A7b) and (A8) contain three unknown constants. However. it is now shown that the
h, term leads to muhivalucd displacements. Substituting in the stress-strain relations. e.g.. in the case of plane
stress. the h, term yields

I h,
f." = "£(n,,-vnoo ) = £r(l-v)eosO

I b,
f.,.. = £(n,.. -vn,,) = Er(l-v)cosO

(A9al

(A9b)
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where £ is the modulus and v Poisson's r.nio of the material. Hence

f b,
u, = e,,(r.O)dr = E(l-v)logrcosO+!(O).

From the relation

it follows that

b, fUo = E"(l-v)(l-logr)sinO- !(O)dO+.q(r).

Now. since

we obtain, using eqns (A9c). (A lOa) and (A IOc), the resulting relation

d! f dq(r) 4h, .- + !(O)dO+r-'- -g(r) = -Sin (I
dO dr E'

which can he satistied for all rand 0, only if

df f 4h, .
;w+ !(O)dO=T sln ()

dq(r)
r d;- -g(r) = O.

The solution to eljn (A 13a) heing

'lh
/(0) = AsinO+Bcos(}+ -i/ (}sin().

iA'kl

(AIOa)

(AIOb)

(AlOe)

(All)

(AI2)

(AUa)

(A13b)

(AI4)

we observe, from eqns (A. lOa, c), that values h, ".0 necessarily lead to multi-valued displacements. We therefore
seth,=O.

The remaining constants A, and 8, are then readily obtained from eljns (A7a) and (AX):

/1~
8, = -'-----,-

2D(l +T)a
(AI5a,b)

where use has now been made of eqn (37).
Substitution in eqns (A6) then yields

/1.
/1~:'(P.O) = ' (p<-}'<)cosO

l>'/(\ +"/)1'·

/1~'(p.O)= D1'(I/1~ , l(3p<+/)cosll
y' +T)P

ell ai.. .. ./1,0 (p, 0) = -,---,--- (p -I' ) Sin II.
l>'r(l +Y')pl

A3. Cases n ~ 2
The solution <P'" of eqn (A I) may be taken in the form

Substituting in eqns (17).

/1~;' = [-n(n -I )A.,o-l- (n l -n-2)8.r' -n(n+ I)C.r-·-l-(n' +n -2)D.r-·] cos nil

/1:;" = [n(n-I)A.,o-l+(n+2)(n+ I)B.,o+n(n+ I)C.r-·-l+(n-l)(n-2)D.r-·!cosnO

/1~,,1 = n[(n - I)A.,o-l + (n + I )B.,o - (n + I)C.r-·- l - (n - \)D.r-·J sin nO.

(A\6a)

(AI6b)

(AI6c)

(AI7)

(AIXa)

(AIXb)

(AI8c)



The eccentric Lame problem 16~1

For n = ~. substitution in the boundary conditions. eqns (AZ) and (A3).leads to evaluation of the four constants;
omitting the algebraic details. these become:

I , ,
D, = • I ,[-(3T+I)0'~+(3i'--I)r~)

. 6(T-l)u' • .

For the case n = 3. the following constants are similarly obtained:

A = _1- [3(3"- + ... + ..z+ 1)0"+( -9".+"· + ..z + 1)f')
J 12Qa I I I J " I J

D - I [(4..·+ .. z+I)0" (4-'· .. z I)")
.1 - - SQa J I 1 J - I - I - ".1

"t>a~

C, = __I -[-3(/+yz+4)O't+(Sy·+S},z-4)ft). UQ . .

-· ...a-'
VI = - ~Q {[2+(/+ I)(y·+ 1))1T!+[2-(i'z+ I){j'"+ 1)lft}

where

SAS 27: 13-8

(A19al

(AI9b)

(AI9c)

(AI9d)

(A~Oa)

(AZOb)

(AZOc)

(A20u)

(AZI)


